
DATAFLOW II:
EVENTBUILDER TO

DATALOGGER
Wesley Ketchum 

(and the artdaq team)

10 Jan 2018 1



EVENTBUILDER APPLICATION

• Application responding to state machine that 
converts collections of artdaq::Fragments to 
art::Events
• Input: artdaq fragment(s) from BoardReaders
• Output: art::Events to DataLoggers

• There are no directly user/experiment-written 
components
• Basically all artdaq internal à any changes imply new 

version of artdaq
• There are “plugins” for what to do with data

• TransferPlugins for data transport
• art modules for data processing and filtering
• Message/metric plugins for what to do with 

monitoring/logging data

10 Jan 2018 2



DIAGRAM OF THE EVENTBUILDER

DataReceiverCore
Data Receiver 

Manager

Transfer Plugins 
(one per source)

art Processes
Shared Memory

Shared Memory 
Event Manager

Shared 
Memory 
Reader 

(RawInput)

artdaq
art

Modules
Output 

Plugin(s)

Fragment 
Header Fragment 

Header
Data 

Location

Fragment Data

RawEvent

10 Jan 2018 3



EVENTBUILDERCORE

• Inherits from DataReceiverCore
• Same logic for EventBuilder as DataLogger and 

Dispatcher
• DataReceiverCore holds a DataReceiverManager

(DRM) and (shared ptr to) 
SharedMemoryEventManager (SMEM)
• SMEM inherits from SharedMemoryManager, and 

owns/manages the shared memory buffer
• DRM runs threads for each TransferInput source
• SMEM launches and monitors art process, which in 

turn decide their output module location
• Multiple art threads allows distributed data processing and 

filtering without needing more EventBuilder applications

10 Jan 2018 4



DATARECEIVERMANAGER THREADS
(IN BRIEF)

1. Wait (with timeout) for fragment header
• Don’t exit on timeout … just try again

2. Check fragment type to handle data vs. control
3. If data, request buffer location from SMEM based 

on sequence ID, retrying for valid location except 
in non-reliable mode

4. Collect fragment data into provided location
5. Inform SMEM fragment is completed with writing
6. Increment fragment counting stats
7. Report receiving stats to metric manager

10 Jan 2018 5



DRM ENDOFDATA

• When DRM gets “EndOfData” fragment, it extracts 
“EndOfData” count to know sequence IDs it expects
• DRM receiving threads will wait for remaining data

• Subject to timeouts
• One could force stop of all sources by sending EndOfData

fragment with no more expected fragments

10 Jan 2018 6



SHAREDMEMORYEVENTMANAGER

• Total buffer size determined at initialization, based on 
max events in buffer, max event size or max fragment 
size * number of expected fragments per event

• “startRun” called just before start of DRM (at start 
transition of course) à start of art threads

• Each art thread must be configured in same way, with 
RawInput_source source module
• Avoid potential art processing history bug
• More on RawInput_source later…

• Each SM event buffer holds flag of state, reader/writer 
position, and ”last touched time”
• SMEM additionally labels buffers being written as inactive, 

active, or pending

10 Jan 2018 7



SHAREDMEMORY BUFFER
STATE MACHINE

EMPTY INACTIVE

READING
ACTIVE

PENDINGFULL

Header Assignment

Some Data

All data

If current lowest managed 
sequence ID…

Mark Done

Data 
Access

Timeout

Timeout

10 Jan 2018 8



MULTITHREADED ACCESS OF
SHAREDMEMORY

• Writing and reading of shared memory is multi-
threaded
• Multiple sources can write into memory simultaneously
• Multiple art threads can read data from memory 

simultaneously
• Mutexes managed per buffer

10 Jan 2018 9



SHAREDMEMORY BUFFER FLOW

• Buffers setup on initialization 

Buffer 
Buffer 

Buffer 
Buffer 

Buffer 
Buffer 

10 Jan 2018 10



SHAREDMEMORY BUFFER FLOW

• All start as empty

EMPTY
EMPTY

…

10 Jan 2018 11



SHAREDMEMORY BUFFER FLOW

• First fragment arrives
• Buffer space allocated for that event
• State is “active” since data is there

E1
F1E1WRITING (Active)

EMPTY

10 Jan 2018 12



SHAREDMEMORY BUFFER FLOW

• Fragment from next event arrives
• All sequence IDs not previously allocated are assigned
• Buffer without data is “Inactive”

E1
F1E1

E2

E3
F1E3

WRITING (Active)

EMPTY

WRITING (Inactive)
WRITING (Active)

10 Jan 2018 13



SHAREDMEMORY BUFFER FLOW

• Remaining fragments from first event arrive
• Once expected number of fragments detected, buffer 

marked “Pending”

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1E3

WRITING (Pending)

EMPTY

WRITING (Inactive)
WRITING (Active)

10 Jan 2018 14



SHAREDMEMORY BUFFER FLOW

• Fragment state shifts to FULL, as it’s the lowest 
sequence ID in buffer

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1E3

FULL

EMPTY

WRITING (Inactive)
WRITING (Active)

10 Jan 2018 15



SHAREDMEMORY BUFFER FLOW

• While fragments arrive, FULL buffer can be read by 
an art thread

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9E3

READING

EMPTY

WRITING (Inactive)
WRITING (Active)

10 Jan 2018 16



SHAREDMEMORY BUFFER FLOW

• Fragments can continue to arrive while we are 
reading/processing first event

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9E3

E4

E5
F1E5

READING

WRITING (Inactive)

WRITING (Inactive)
WRITING (Active)

WRITING (Active)

10 Jan 2018 17



SHAREDMEMORY BUFFER FLOW

• Remaining fragments for the “next” event, pushing 
its state to Pending
• Does not immediately move to FULL, as Event 2 is still in 

buffer 

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

READING

WRITING (Inactive)

WRITING (Inactive)
WRITING (Pending)

WRITING (Active)

10 Jan 2018 18



SHAREDMEMORY BUFFER FLOW

• art thread can finish with event and buffer gets 
marked done …

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

Mark Done …

WRITING (Inactive)

WRITING (Inactive)
WRITING (Pending)

WRITING (Active)

10 Jan 2018 19



SHAREDMEMORY BUFFER FLOW

• … and is then marked as EMPTY

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

EMPTY

WRITING (Inactive)

WRITING (Inactive)
WRITING (Pending)

WRITING (Active)

10 Jan 2018 20



SHAREDMEMORY BUFFER FLOW

• Buffers in WRITING state can eventually timeout...

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

EMPTY

WRITING (Inactive)

Timeout
WRITING (Pending)

WRITING (Active)

10 Jan 2018 21



SHAREDMEMORY BUFFER FLOW

• …and then revert back to EMPTY...

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

EMPTY

WRITING (Inactive)

EMPTY
WRITING (Pending)

WRITING (Active)

10 Jan 2018 22



SHAREDMEMORY BUFFER FLOW

• ...which allows the pending buffer to be marked 
FULL
• And then is readable by an art thread

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E4

E5
F1E5

EMPTY

WRITING (Inactive)

EMPTY
FULL

WRITING (Active)

10 Jan 2018 23



SHAREDMEMORY BUFFER FLOW

• If a fragment doesn’t arrive for a particular event, 
can also see backlog due to that missing fragment

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EMPTY

EMPTY

WRITING (Pending)
FULL

WRITING (Active)

10 Jan 2018 24



SHAREDMEMORY BUFFER FLOW

• On timeout, active buffers are pushed forward to 
pending...

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EMPTY

EMPTY

WRITING (Pending)
FULL

WRITING (Pending)

10 Jan 2018 25



SHAREDMEMORY BUFFER FLOW

• ...which allows them to be marked as FULL ...
• Note: pending and FULL buffers will not accept new 

fragments, so incoming missing fragment would be 
ignored

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EMPTY

EMPTY

WRITING (Pending)
FULL

FULL

10 Jan 2018 26



SHAREDMEMORY BUFFER FLOW

• ...which will then eventually clear the backlog

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EMPTY

EMPTY

FULL
FULL

FULL

10 Jan 2018 27



SHAREDMEMORY BUFFER FLOW

• When enough events come in (and we haven’t read 
events fast enough) the buffer can start to fill...

E8

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E9
F1E9

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

WRITIING (Inactive)

WRITING (Active)

FULL
FULL

FULL

10 Jan 2018 28



SHAREDMEMORY BUFFER FLOW

• ...and so if the next event (here event 11) comes in, 
we overwrite the lowest inactive buffer

E8

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E9
F1E9

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EA

Overwrite…

WRITING (Active)

FULL
FULL

FULL
WRITING (Inactive)

10 Jan 2018 29



SHAREDMEMORY BUFFER FLOW

• ...and fill with the new event
• Option, by default, is to allow for overwriting FULL buffers 

(but not READING buffers) if there are no Inactive buffers 
left

EB
F1EB

E7
F1

E7
F2

E7
F3

E7
F4

E7
F5

E7
F6

E7
F7

E7
F8

E7
F9

E7
FA

E7
FBE7

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9

E3
FA

E3
FBE3

E9
F1E9

E5
F1

E5
F2

E5
F3

E5
F4

E5
F5

E5
F6

E5
F7

E5
F8

E5
F9

E5
FAE5

EA

WRITIING (Active)

WRITING (Active)

FULL
FULL

FULL
WRITING (Inactive)

10 Jan 2018 30



DIAGRAM OF THE ART SIDE

RawInput (Shared 
Memory Reader)

Shared Memory 
Event Receiver

artdaq art
Modules

RootMPIOutput
(EventBuilder to DataLogger or 

DataLogger to Dispatcher)

RootFileOutput
(DataLogger to Disk)

TransferOutput
(Dispatcher to Online Monitor)

art::Event
Shared	
Memory

Transfer 
Plugin

Data 
Sender 

Manager

10 Jan 2018 31



WHAT HAPPENS IN ART, GENERALLY

• Data comes in via “input source”
• Normal offline art jobs: this is a ROOT file with art::Events
• “EmptyEvent” used for simulation generation
• Dedicated input source for reading in from shared 

memory: SharedMemoryReader source
• Takes in raw data and creates art::Event

• Producer/Filter modules run in “trigger path” over 
art::Events
• Multiple trigger paths allowed without running modules twice

• Events passing trigger paths sent to output 
modules
• All trigger paths must finish first
• Multiple output modules allowed

10 Jan 2018 32



SHAREDMEMORYREADER SOURCE

• Produces collections of artdaq::Fragments in 
art::Event
• Artdaq::Fragments have instance labels of fragment type 

or “ContainerXXX” type
• readNext routine checks for data indefinitely

• There is a timeout, but by default resume back in loop 
automatically after a timeout

• Returns and quits art thread if
• No resume after timeout (and we timeout)
• Get an event with no fragments
• First fragment type is EndOfData

• Handles art needs with EndOfRun and 
EndOfSubrun fragments too

10 Jan 2018 33



ROOTMPIOUTPUT MODULE

• Output module used for handling sending art::Events 
between artdaq processes
• EventBuilderàDataLogger, DataLoggeràDispatcher

• Two main parts
• Handling and packaging of the art::Event into a binary blob 

inside an artdaq::Fragment
• The data transport, done via the NetMonTransportService

• NetMonTransportService is global scope element in art 
to handle data transport (incoming and outgoing)
• Contains DataSenderManager for outgoing, with 

TransferInterface plugins (only TPC and SHMEM work right 
now)

• Contains SharedMemoryReader piece for incoming
• All ROOTMPIOutput modules in an art job will share the 

NetMonTransportService
• Note: DataSenderManager is same as in BRs, meaning it 

can use a RoutingMaster as well

10 Jan 2018 34



DIAGRAM OF THE DATALOGGER

DataReceiverCore
Data Receiver 

Manager

Transfer Plugins 
(one per source)

art Processes
Shared Memory

Shared Memory 
Event Manager

Shared 
Memory 
Reader 

(RawInput)

artdaq
art

Modules
Output 

Plugin(s)

Fragment 
Header Fragment 

Header
Data 

Location

Fragment Data

RawEvent

10 Jan 2018 35



DATALOGGERCORE

• Same logic for EventBuilder as DataLogger
• DataReceiverCore holds a DataReceiverManager and 

SharedMemoryEventManager (and buffer)
• DRM runs threads for each TransferInput source
• SMEM launches and monitors art process, which in turn 

decide their output module location
• SMEM handling/flow works in same way as 

EventBuilder
• Simplified that there is now only 1 fragment per event, 

containing the fully built event
• Input source for art threads reads from shared memory 

and simply copies/unpacks the fragment data payload 
into new art::Event
• Specifying all the necessary art internals when it does

10 Jan 2018 36



ROOTOUTPUT MODULE

• art already provides an output module to write a 
ROOT file: RootOutputModule
• Options for …

• ROOT compression level
• When to create new files (per n events, per subrun, max 

file size, etc.)
• Objects to drop (not write to file)
• Trigger paths from which to include events (default is all 

events at end of all paths)

10 Jan 2018 37


